Class Choo32Random
- All Implemented Interfaces:
Externalizable
,Serializable
,RandomGenerator
Math.imul()
on GWT) and unsigned right shifts for its output-mixing step.
It will usually be compiled out, but this does also use variable = variable + constant | 0;
in order
to force additions to counters on GWT to actually overflow as they do (and should) on desktop JVMs.
Choo32Random has a guaranteed minimum period of 2 to the 32, and is very likely to have a much longer period for almost all initial states. There are expected to be several (double-digit) relatively long sub-cycles that most states will be within, and relatively few sub-cycles nearing the smallest possible size (2 to the 32, or over 4 billion).
The algorithm used here has four states purely to exploit instruction-level parallelism; one state is a counter (this gives the guaranteed minimum period of 2 to the 32), and the others combine the values of the four states across three variables. It is possible to invert the generator given a full 128-bit state; this is vital for its period and quality. It is not possible to invert the generator given a known small number of outputs; the furthest you can get when inverting the output is to get the current sum of all four states.
This implements all optional methods in EnhancedRandom except
EnhancedRandom.skip(long)
; it does implement
previousLong()
and previousInt()
without using skip().
This uses part of an output mixer found using hash-prospector by TheIronBorn, and runs it on a combination of all four states.
This is called Choo32Random because it is choo-choo-chugging along at improving on the similar ChopRandom. It uses a simpler state transition than ChopRandom, but a more complex output mixer so that it can be used as a sequence of hashes of four values. ChopRandom doesn't actually perform any mixing, which means if you only produce one generation from many generators, that entire group of results will be based entirely on one initial state in each generator. Choo32Random does do some mixing, does it on a combination of all states, and does it on the state after it transitions to the next in the sequence, rather than before. This lets it be used as a hash of 1 to 4 int inputs to get a sequence of random numbers as output. It also means this is slower to generate sequences of results than ChopRandom, though the first result will be actually random with this and probably will be very correlated with the initial state with ChopRandom.
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface java.util.random.RandomGenerator
RandomGenerator.ArbitrarilyJumpableGenerator, RandomGenerator.JumpableGenerator, RandomGenerator.LeapableGenerator, RandomGenerator.SplittableGenerator, RandomGenerator.StreamableGenerator
-
Field Summary
-
Constructor Summary
ConstructorDescriptionCreates a new Choo32Random with a random state.Choo32Random
(int seed) Creates a new Choo32Random with the given seed; alllong
values are permitted.Choo32Random
(int stateA, int stateB, int stateC, int stateD) Creates a new Choo32Random with the given four states; allint
values are permitted.Choo32Random
(long seed) Creates a new Choo32Random with the given seed; alllong
values are permitted. -
Method Summary
Modifier and TypeMethodDescriptioncopy()
Creates a new EnhancedRandom with identical states to this one, so if the same EnhancedRandom methods are called on this object and its copy (in the same order), the same outputs will be produced.boolean
long
getSelectedState
(int selection) Gets the state determined byselection
, as-is.long
long
long
int
This generator has 4int
states, so this returns 4.long
getTag()
Gets the tag used to identify this type of EnhancedRandom, as a String.int
next
(int bits) Generates the next pseudorandom number with a specific maximum size in bits (not a max number).boolean
Returns the next pseudorandom, uniformly distributedboolean
value from this random number generator's sequence.void
nextBytes
(byte[] bytes) Generates random bytes and places them into a user-supplied byte array.float
Returns the next pseudorandom, uniformly distributedfloat
value between0.0
(inclusive) and1.0
(exclusive) from this random number generator's sequence.float
This is just likeEnhancedRandom.nextFloat()
, returning a float between 0 and 1, except that it is inclusive on both 0.0 and 1.0.int
nextInt()
Returns the next pseudorandom, uniformly distributedint
value from this random number generator's sequence.int
nextInt
(int bound) Returns a pseudorandom, uniformly distributedint
value between 0 (inclusive) and the specified value (exclusive), drawn from this random number generator's sequence.long
nextLong()
Returns the next pseudorandom, uniformly distributedlong
value from this random number generator's sequence.long
nextLong
(long inner, long outer) Returns a pseudorandom, uniformly distributedlong
value between the specifiedinnerBound
(inclusive) and the specifiedouterBound
(exclusive).int
nextSignedInt
(int outerBound) Returns a pseudorandom, uniformly distributedint
value between an inner bound of 0 (inclusive) and the specifiedouterBound
(exclusive).long
nextSignedLong
(long inner, long outer) Returns a pseudorandom, uniformly distributedlong
value between the specifiedinnerBound
(inclusive) and the specifiedouterBound
(exclusive).int
Optional; moves the state to its previous value and returns the previous int that would have been produced byEnhancedRandom.nextInt()
.long
Optional; moves the state to its previous value and returns the previous long that would have been produced byEnhancedRandom.nextLong()
.void
setSeed
(int seed) This initializes all 4 states of the generator to random values based on the given seed.void
setSeed
(long seed) This initializes all 4 states of the generator to random values based on the given seed.void
setSelectedState
(int selection, long value) Sets one of the states, determined byselection
, to the lower 32 bits ofvalue
, as-is.void
setState
(long stateA, long stateB, long stateC, long stateD) Sets the state completely to the given four state variables, casting each to an int.void
setStateA
(long stateA) Sets the first part of the state by casting the parameter to an int.void
setStateB
(long stateB) Sets the second part of the state by casting the parameter to an int.void
setStateC
(long stateC) Sets the third part of the state by casting the parameter to an int.void
setStateD
(long stateD) Sets the fourth part of the state by casting the parameter to an int.toString()
Methods inherited from class com.github.tommyettinger.random.EnhancedRandom
areEqual, fixGamma, maxDoubleOf, maxFloatOf, maxIntOf, maxLongOf, minDoubleOf, minFloatOf, minIntOf, minLongOf, nextBoolean, nextDouble, nextDouble, nextDouble, nextExclusiveDouble, nextExclusiveDouble, nextExclusiveDouble, nextExclusiveDoubleEquidistant, nextExclusiveFloat, nextExclusiveFloat, nextExclusiveFloat, nextExclusiveFloatEquidistant, nextExclusiveSignedDouble, nextExclusiveSignedFloat, nextFloat, nextFloat, nextGaussian, nextGaussian, nextInclusiveDouble, nextInclusiveDouble, nextInclusiveDouble, nextInclusiveFloat, nextInclusiveFloat, nextInt, nextLong, nextSign, nextSignedInt, nextSignedLong, nextTriangular, nextTriangular, nextTriangular, nextTriangular, nextUnsignedInt, probit, randomElement, randomElement, readExternal, seedFromMath, setState, setState, setState, setState, setState, setWith, shuffle, shuffle, shuffle, shuffle, shuffle, shuffle, shuffle, shuffle, shuffle, shuffle, shuffle, shuffle, shuffle, shuffle, shuffle, shuffle, shuffle, shuffle, shuffle, shuffle, skip, stringDeserialize, stringDeserialize, stringSerialize, stringSerialize, writeExternal
Methods inherited from class java.util.Random
doubles, doubles, doubles, doubles, ints, ints, ints, ints, longs, longs, longs, longs
Methods inherited from class java.lang.Object
clone, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface java.util.random.RandomGenerator
isDeprecated, nextExponential
-
Field Details
-
stateA
protected int stateAThe first state; can be any int. -
stateB
protected int stateBThe second state; can be any int. -
stateC
protected int stateCThe third state; can be any int. If this has just been set to some value, then the next call tonextInt()
will return that value as-is. Later calls will be more random. -
stateD
protected int stateDThe fourth state; can be any int.
-
-
Constructor Details
-
Choo32Random
public Choo32Random()Creates a new Choo32Random with a random state. -
Choo32Random
public Choo32Random(long seed) Creates a new Choo32Random with the given seed; alllong
values are permitted. The seed will be passed tosetSeed(long)
to attempt to adequately distribute the seed randomly.- Parameters:
seed
- anylong
value
-
Choo32Random
public Choo32Random(int seed) Creates a new Choo32Random with the given seed; alllong
values are permitted. The seed will be passed tosetSeed(int)
to attempt to adequately distribute the seed randomly.- Parameters:
seed
- anylong
value
-
Choo32Random
public Choo32Random(int stateA, int stateB, int stateC, int stateD) Creates a new Choo32Random with the given four states; allint
values are permitted. These states will be used verbatim.- Parameters:
stateA
- anyint
valuestateB
- anyint
valuestateC
- anyint
value; will be returned exactly on the first call tonextInt()
stateD
- anyint
value
-
-
Method Details
-
getTag
Description copied from class:EnhancedRandom
Gets the tag used to identify this type of EnhancedRandom, as a String. This tag should be unique, and for uniformity purposes, all tags used in this library are 4 characters long. User-defined tags should have a different length.- Specified by:
getTag
in classEnhancedRandom
- Returns:
- a unique String identifier for this type of EnhancedRandom; usually 4 chars long.
-
getStateCount
public int getStateCount()This generator has 4int
states, so this returns 4.- Overrides:
getStateCount
in classEnhancedRandom
- Returns:
- 4 (four)
-
getSelectedState
public long getSelectedState(int selection) Gets the state determined byselection
, as-is. The value for selection should be between 0 and 3, inclusive; if it is any other value this gets state D as if 3 was given.- Overrides:
getSelectedState
in classEnhancedRandom
- Parameters:
selection
- used to select which state variable to get; generally 0, 1, 2, or 3- Returns:
- the value of the selected state, which is an int that will be promoted to long
-
setSelectedState
public void setSelectedState(int selection, long value) Sets one of the states, determined byselection
, to the lower 32 bits ofvalue
, as-is. Selections 0, 1, 2, and 3 refer to states A, B, C, and D, and if the selection is anything else, this treats it as 3 and sets stateD. This always castsvalue
to an int before using it.- Overrides:
setSelectedState
in classEnhancedRandom
- Parameters:
selection
- used to select which state variable to set; generally 0, 1, 2, or 3value
- the exact value to use for the selected state, if valid
-
setSeed
public void setSeed(long seed) This initializes all 4 states of the generator to random values based on the given seed. (2 to the 64) possible initial generator states can be produced here.- Specified by:
setSeed
in classEnhancedRandom
- Parameters:
seed
- the initial seed; may be any long
-
setSeed
public void setSeed(int seed) This initializes all 4 states of the generator to random values based on the given seed. (2 to the 32) possible initial generator states can be produced here.- Parameters:
seed
- the initial seed; may be any long
-
getStateA
public long getStateA() -
setStateA
public void setStateA(long stateA) Sets the first part of the state by casting the parameter to an int.- Parameters:
stateA
- can be any long, but will be cast to an int before use
-
getStateB
public long getStateB() -
setStateB
public void setStateB(long stateB) Sets the second part of the state by casting the parameter to an int.- Parameters:
stateB
- can be any long, but will be cast to an int before use
-
getStateC
public long getStateC() -
setStateC
public void setStateC(long stateC) Sets the third part of the state by casting the parameter to an int. Note that if you callnextInt()
immediately after this, it will return the givenstateC
(cast to int) as-is, so you may want to call some random generation methods (such as nextInt()) and discard the results after setting the state.- Parameters:
stateC
- can be any long, but will be cast to an int before use
-
getStateD
public long getStateD() -
setStateD
public void setStateD(long stateD) Sets the fourth part of the state by casting the parameter to an int.- Parameters:
stateD
- can be any long, but will be cast to an int before use
-
setState
public void setState(long stateA, long stateB, long stateC, long stateD) Sets the state completely to the given four state variables, casting each to an int. This is the same as callingsetStateA(long)
,setStateB(long)
,setStateC(long)
, andsetStateD(long)
as a group. You may want to callnextInt()
a few times after setting the states like this, unless the value for stateC (in particular) is already adequately random; the first call tonextInt()
, if it is made immediately after calling this, will returnstateC
as-is.- Overrides:
setState
in classEnhancedRandom
- Parameters:
stateA
- the first state; can be any long, but will be cast to an int before usestateB
- the second state; can be any long, but will be cast to an int before usestateC
- the third state; can be any long, but will be cast to an int before usestateD
- the fourth state; can be any long, but will be cast to an int before use
-
nextLong
public long nextLong()Description copied from class:EnhancedRandom
Returns the next pseudorandom, uniformly distributedlong
value from this random number generator's sequence. The general contract ofnextLong
is that onelong
value is pseudorandomly generated and returned.
The only methods that need to be implemented by this interface are this andEnhancedRandom.copy()
, though other methods can be implemented as appropriate for generators that, for instance, natively produce ints rather than longs.- Specified by:
nextLong
in interfaceRandomGenerator
- Specified by:
nextLong
in classEnhancedRandom
- Returns:
- the next pseudorandom, uniformly distributed
long
value from this random number generator's sequence
-
previousLong
public long previousLong()Description copied from class:EnhancedRandom
Optional; moves the state to its previous value and returns the previous long that would have been produced byEnhancedRandom.nextLong()
. This can be equivalent to callingEnhancedRandom.skip(long)
with -1L, but not always; many generators can't efficiently skip long distances, but can step back by one value.
Generators that natively generateint
results typically producelong
values by generating an int for the high 32 bits and an int for the low 32 bits. When producing the previous long, the order the high and low bits are generated, such as byEnhancedRandom.previousInt()
, should be reversed. Generators that natively producelong
values usually don't need to implementEnhancedRandom.previousInt()
, but those that produceint
usually should implement it, and may optionally call previousInt() twice in this method.
If you know how to implement the reverse of a particular random number generator, it is recommended you do so here, rather than rely on skip(). This isn't always easy, but should always be possible for any decent PRNG (some historical PRNGs, such as the Middle-Square PRNG, cannot be reversed at all). If a generator cannot be reversed because multiple initial states can transition to the same subsequent state, it is known to have statistical problems that are not necessarily present in a generator that matches one initial state to one subsequent state.
The public implementation callsEnhancedRandom.skip(long)
with -1L, and if skip() has not been implemented differently, then it will throw an UnsupportedOperationException.- Overrides:
previousLong
in classEnhancedRandom
- Returns:
- the previous number this would have produced with
EnhancedRandom.nextLong()
-
previousInt
public int previousInt()Description copied from class:EnhancedRandom
Optional; moves the state to its previous value and returns the previous int that would have been produced byEnhancedRandom.nextInt()
. This can be equivalent to callingEnhancedRandom.previousLong()
and casting to int, but not always; generators that natively generateint
results typically move the state once in nextInt() and twice in nextLong(), and should move the state back once here.
IfEnhancedRandom.nextInt()
is implemented using a call toEnhancedRandom.nextLong()
, the implementation in this class is almost always sufficient and correct. If nextInt() changes state differently from nextLong(), then this should be implemented, if feasible, andEnhancedRandom.previousLong()
can be implemented using this method. If you know how to implement the reverse of a particular random number generator, it is recommended you do so here, rather than rely on skip(). This isn't always easy, but should always be possible for any decent PRNG (some historical PRNGs, such as the Middle-Square PRNG, cannot be reversed at all). If a generator cannot be reversed because multiple initial states can transition to the same subsequent state, it is known to have statistical problems that are not necessarily present in a generator that matches one initial state to one subsequent state.
The public implementation callsEnhancedRandom.previousLong()
and casts it to int, and if previousLong() and skip() have not been implemented differently, then it will throw an UnsupportedOperationException.- Overrides:
previousInt
in classEnhancedRandom
- Returns:
- the previous number this would have produced with
EnhancedRandom.nextInt()
-
next
public int next(int bits) Description copied from class:EnhancedRandom
Generates the next pseudorandom number with a specific maximum size in bits (not a max number). If you want to get a random number in a range, you should usually useEnhancedRandom.nextInt(int)
instead. For some specific cases, this method is more efficient and less biased thanEnhancedRandom.nextInt(int)
. Forbits
values between 1 and 30, this should be similar in effect tonextInt(1 << bits)
; though it won't typically produce the same values, they will have the correct range. Ifbits
is 31, this can return any non-negativeint
; note thatnextInt(1 << 31)
won't behave this way because1 << 31
is negative. Ifbits
is 32 (or 0), this can return anyint
.The general contract of
next
is that it returns anint
value and if the argumentbits
is between1
and32
(inclusive), then that many low-order bits of the returned value will be (approximately) independently chosen bit values, each of which is (approximately) equally likely to be0
or1
.Note that you can give this values for
bits
that are outside its expected range of 1 to 32, but the value used, as long as bits is positive, will effectively bebits % 32
. As stated before, a value of 0 for bits is the same as a value of 32.- Overrides:
next
in classEnhancedRandom
- Parameters:
bits
- the amount of random bits to request, from 1 to 32- Returns:
- the next pseudorandom value from this random number generator's sequence
-
nextInt
public int nextInt()Description copied from class:EnhancedRandom
Returns the next pseudorandom, uniformly distributedint
value from this random number generator's sequence. The general contract ofnextInt
is that oneint
value is pseudorandomly generated and returned. All 232 possibleint
values are produced with (approximately) equal probability.- Specified by:
nextInt
in interfaceRandomGenerator
- Overrides:
nextInt
in classEnhancedRandom
- Returns:
- the next pseudorandom, uniformly distributed
int
value from this random number generator's sequence
-
nextInt
public int nextInt(int bound) Description copied from class:EnhancedRandom
Returns a pseudorandom, uniformly distributedint
value between 0 (inclusive) and the specified value (exclusive), drawn from this random number generator's sequence. The general contract ofnextInt
is that oneint
value in the specified range is pseudorandomly generated and returned. Allbound
possibleint
values are produced with (approximately) equal probability.
This method clamps bound to be at least 0; it never returns a negative int.
It should be mentioned that the technique this uses has some bias, depending onbound
, but it typically isn't measurable without specifically looking for it. Using the method this does allows this method to always advance the state by one step, instead of a varying and unpredictable amount with the more typical ways of rejection-sampling random numbers and only using numbers that can produce an int within the bound without bias. See M.E. O'Neill's blog about random numbers for discussion of alternative, unbiased methods.- Specified by:
nextInt
in interfaceRandomGenerator
- Overrides:
nextInt
in classEnhancedRandom
- Parameters:
bound
- the upper bound (exclusive). If negative or 0, this always returns 0.- Returns:
- the next pseudorandom, uniformly distributed
int
value between zero (inclusive) andbound
(exclusive) from this random number generator's sequence
-
nextSignedInt
public int nextSignedInt(int outerBound) Description copied from class:EnhancedRandom
Returns a pseudorandom, uniformly distributedint
value between an inner bound of 0 (inclusive) and the specifiedouterBound
(exclusive). This is meant for cases where the outer bound may be negative, especially if the bound is unknown or may be user-specified. A negative outer bound is used as the lower bound; a positive outer bound is used as the upper bound. An outer bound of -1, 0, or 1 will always return 0, keeping the bound exclusive (except for outer bound 0). This method is slightly slower thanEnhancedRandom.nextInt(int)
.- Overrides:
nextSignedInt
in classEnhancedRandom
- Parameters:
outerBound
- the outer exclusive bound; may be any int value, allowing negative- Returns:
- a pseudorandom int between 0 (inclusive) and outerBound (exclusive)
- See Also:
-
nextBytes
public void nextBytes(byte[] bytes) Description copied from class:EnhancedRandom
Generates random bytes and places them into a user-supplied byte array. The number of random bytes produced is equal to the length of the byte array.- Specified by:
nextBytes
in interfaceRandomGenerator
- Overrides:
nextBytes
in classEnhancedRandom
- Parameters:
bytes
- the byte array to fill with random bytes
-
nextLong
public long nextLong(long inner, long outer) Description copied from class:EnhancedRandom
Returns a pseudorandom, uniformly distributedlong
value between the specifiedinnerBound
(inclusive) and the specifiedouterBound
(exclusive). IfouterBound
is less than or equal toinnerBound
, this always returnsinnerBound
.
For any case where outerBound might be valid but less than innerBound, you can useEnhancedRandom.nextSignedLong(long, long)
.- Specified by:
nextLong
in interfaceRandomGenerator
- Overrides:
nextLong
in classEnhancedRandom
- Parameters:
inner
- the inclusive inner bound; may be any long, allowing negativeouter
- the exclusive outer bound; must be greater than innerBound (otherwise this returns innerBound)- Returns:
- a pseudorandom long between innerBound (inclusive) and outerBound (exclusive)
- See Also:
-
nextSignedLong
public long nextSignedLong(long inner, long outer) Description copied from class:EnhancedRandom
Returns a pseudorandom, uniformly distributedlong
value between the specifiedinnerBound
(inclusive) and the specifiedouterBound
(exclusive). This is meant for cases where either bound may be negative, especially if the bounds are unknown or may be user-specified.- Overrides:
nextSignedLong
in classEnhancedRandom
- Parameters:
inner
- the inclusive inner bound; may be any long, allowing negativeouter
- the exclusive outer bound; may be any long, allowing negative- Returns:
- a pseudorandom long between innerBound (inclusive) and outerBound (exclusive)
- See Also:
-
nextBoolean
public boolean nextBoolean()Description copied from class:EnhancedRandom
Returns the next pseudorandom, uniformly distributedboolean
value from this random number generator's sequence. The general contract ofnextBoolean
is that oneboolean
value is pseudorandomly generated and returned. The valuestrue
andfalse
are produced with (approximately) equal probability.
The public implementation simply returns a sign check onEnhancedRandom.nextLong()
, returning true if the generated long is negative. This is typically the safest way to implement this method; many types of generators have less statistical quality on their lowest bit, so just returning based on the lowest bit isn't always a good idea.- Specified by:
nextBoolean
in interfaceRandomGenerator
- Overrides:
nextBoolean
in classEnhancedRandom
- Returns:
- the next pseudorandom, uniformly distributed
boolean
value from this random number generator's sequence
-
nextFloat
public float nextFloat()Description copied from class:EnhancedRandom
Returns the next pseudorandom, uniformly distributedfloat
value between0.0
(inclusive) and1.0
(exclusive) from this random number generator's sequence.The general contract of
nextFloat
is that onefloat
value, chosen (approximately) uniformly from the range0.0f
(inclusive) to1.0f
(exclusive), is pseudorandomly generated and returned. All 224 possiblefloat
values of the form m x 2-24, where m is a positive integer less than 224, are produced with (approximately) equal probability.The public implementation uses the upper 24 bits of
EnhancedRandom.nextLong()
, with an unsigned right shift and a multiply by a very small float (5.9604645E-8f
or0x1p-24f
). It tends to be fast if nextLong() is fast, but alternative implementations could use 24 bits ofEnhancedRandom.nextInt()
(or justEnhancedRandom.next(int)
, giving it24
) if that generator doesn't efficiently generate 64-bit longs.- Specified by:
nextFloat
in interfaceRandomGenerator
- Overrides:
nextFloat
in classEnhancedRandom
- Returns:
- the next pseudorandom, uniformly distributed
float
value between0.0
and1.0
from this random number generator's sequence
-
nextInclusiveFloat
public float nextInclusiveFloat()Description copied from class:EnhancedRandom
This is just likeEnhancedRandom.nextFloat()
, returning a float between 0 and 1, except that it is inclusive on both 0.0 and 1.0. It returns 1.0 rarely, 0.00000596046412226771% of the time if there is no bias in the generator, but it can happen. This method does not return purely-equidistant floats, because there the resolution of possible floats it can generate is higher as it approaches 0.0 . The smallest non-zero float this can return is 5.421011E-20f (0x1p-64f in hex), and the largest non-one float this can return is 0.9999999f (0x1.fffffcp-1f in hex). This uses nearly identical code toEnhancedRandom.nextExclusiveFloat()
, but carefully adds and subtracts a small number to force rounding at 0.0 and 1.0 . This retains the exclusive version's quality of having approximately uniform distributions for every mantissa bit, unlike most ways of generating random floating-point numbers.- Overrides:
nextInclusiveFloat
in classEnhancedRandom
- Returns:
- a float between 0.0, inclusive, and 1.0, inclusive
-
copy
Description copied from class:EnhancedRandom
Creates a new EnhancedRandom with identical states to this one, so if the same EnhancedRandom methods are called on this object and its copy (in the same order), the same outputs will be produced. This is not guaranteed to copy the inherited state of any parent class, so if you call methods that are only implemented by a superclass (likeRandom
) and not this one, the results may differ.- Specified by:
copy
in classEnhancedRandom
- Returns:
- a deep copy of this EnhancedRandom.
-
equals
-
toString
-